

ESQUEMA SIMPLIFICADO DE TODO EL PROCESO

SALMONET -ADN

REF DLSAN01 Versión 3.4

Almacene según su etiqueta individual

Almacene los controles incluidos a -20 °C ±5 °C

Uso deseado

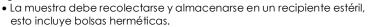
SALMONET-ADN incluye lo necesario para detectar la presencia de ADN de *Salmonella spp.*, y posteriormente visualizar los resultados mediante las tiras de Bionet multi a partir una variedad de alimentos de acuerdo al apartado **A.6.1** de la **NOM-210-SSA1-2014**.

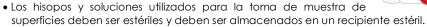
Introducción

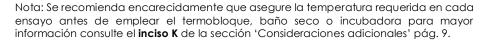
La Salmonella spp. es una bacteria patógena responsable de causar algunas de las enfermedades que se transmiten a los seres humanos mediante el consumo de alimentos. Según datos de la Organización Mundial de la Salud (OMS) las enfermedades diarreicas representan más de la mitad de las enfermedades transmitidas por vía alimentaria, de hecho, se estima que alrededor de 550 millones de personas se enferman y 230,000 de estas fallecen cada año. El grupo más afectado por este tipo de enfermedades son los niños pues 220 millones enferman y 96,000 mueren anualmente. Todo esto ha generado un problema de salud pública a nivel mundial.

Los síntomas que se presentan pueden ser de corta duración como la náusea, vómito y diarrea, así como de larga duración siendo el cáncer, la insuficiencia renal o hepática, trastornos cerebrales y neuronales los más relacionados. El tratamiento contra esta bacteria se basa principalmente en el uso de antibióticos [1,2,3]. En la actualidad la Salmonella spp. puede ser detectada tanto en muestras clínicas como en alimentos contaminados con esta. Para ello, se disponen de diversas técnicas tradicionales como el cultivo, pruebas inmunológicas o métodos basados en biosensores, sin embargo, las técnicas de detección molecular a temperatura constante han demostrado una gran ventaja por tener una alta sensibilidad y especificidad brindando grandes beneficios como al sector salud al lograr un diagnóstico rápido y preciso y, al sector alimentario permitiendo garantizar la calidad de sus productos con mayor rapidez [4,5].

Principio

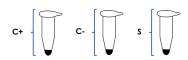

Detección de ADN: El SALMONET-ADN (REF DLSAN01), es un ensayo basado en la amplificación isotérmica mediada por bucle (LAMP por sus siglas en inglés) que permite detectar la presencia de ADN de Salmonella spp. La reacción de LAMP se realiza mezclando la muestra en un tubo con reactivo seco, luego se incuba a 65 °C en condiciones isotérmicas, si la muestra contiene ADN de Salmonella spp en una concentración mayor al límite de detección se llevará a cabo el proceso de amplificación durante el cual se incorporan las marcas biotina-FAM. En caso contrario, de no estar presente o se encuentre por debajo del límite de detección no se realizará el proceso de amplificación ni tampoco el marcaje (etiquetado).


Visualización del resultado: Una vez concluido la detección, se utiliza el producto BIONET MULTI (REF DLBIO01) incluido. Para ello el producto de la amplificación es diluido en reactivo de corrimiento en el cual se colocará la prueba para que la muestra migre a través de ésta por acción capilar. Si la muestra contenía ADN de Salmonella spp. las marcas biotina-FAM reaccionarán con las partículas recubiertas de anticuerpos antifluoresceína presentes en el conjugado, luego continuará migrando hasta encontrarse con los anticuerpos anti-biotina en la región de prueba (T), estos reaccionarán formando una línea de color en dicha región T, esto indica un resultado positivo debido a que fue detectada la presencia de ADN de Salmonella spp. Por el contrario, si no hay ADN de Salmonella spp. no habrá marcas de biotina-FAM y por lo tanto no se formará la línea de color en la región T, esto indica un resultado negativo. La prueba posee un control (C) que indica que se ha agregado la cantidad de muestra correcta y el procedimiento se ha realizado con éxito.


INSTRUCCIONES DE USO

PASO UNO: OBTENCIÓN Y PREPARACIÓN DE LA MUESTRA

Obtención: Esto dependerá del tipo de muestra, por lo tanto, considere lo siguiente.


Preparación: Particularmente en el caso de los alimentos/superficies se requiere realizar un proceso de **enriquecimiento** para la detección de un número bajo de bacterias o células estresadas de *Salmonela spp.*, siga lo estipulado en el apartado **A.6.1** de la **NOM-210-SSA1-2014** según el alimento.

PASO TRES: DETECCIÓN DE SALMONELLA SPP.

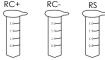
PRECAUCIÓN: La muestra enriquecida puede ser utilizada luego de su obtención, de lo contrario almacénela a -20 °C y permita que alcance temperatura ambiente antes utilizarlo.

A continuación, siga cada uno de los pasos que se describen, recuerde no modificar y/o alterar ninguno de los pasos o cantidades que se indican.

- I. Identifique cada uno de los materiales provistos por el producto SALMONET-ADN y asegúrese de contar con todo lo necesario, consulte la pág. 6, sección **Contenido**.
- II. Prepare cada tubo por separado según lo descrito.
 - Muestra enriquecida (S):
 - Transfiera 10 µL de buffer de lisis a un tubo de 200 µL (nuevo), añada 80 µL de agua libre de nucleasas y al final coloque 10 µL de sobrenadante, deje reposar por 5-10 minutos y caliente a 95 °C por 10 minutos después permita que alcance temperatura ambiente. Posteriormente tome un tubo con <u>reactivo seco</u> y agregue 20 µL de reactivo diluyente, 5 µL de muestra y mezcle por pipeteo hasta obtener una consistencia homogénea. Al finalizar cierre el tubo y rotule de tal forma que pueda identificarla.
 - Nota: se recomienda realizar duplicados por cada muestra a analizar.
 - Control positivo (C+) del ensayo: Tome un tubo con <u>reactivo seco</u> y agregue 20 µL de reactivo diluyente, 5 µL de control positivo y mezcle por pipeteo hasta obtener una consistencia homogénea. Al finalizar cierre el tubo y rotule con C+.
 - Control negativo (C-) del ensayo: Tome un tubo con <u>reactivo seco</u> y agregue 20 µL de reactivo diluyente, 5 µL de control negativo y mezcle por pipeteo hasta obtener una consistencia homogénea. Al finalizar cierre el tubo y rotule con C-.

III. Con ayuda del gotero con aceite mineral, coloque una gota de aceite en el interior de cada uno de los tubos, solo sobre su superficie sin mezclar. Posteriormente, colóquelos a 65 °C por 30 minutos en alguno de los siguientes equipos: termobloque, baño seco o incubador. Al finalizar el tiempo saque los tubos del equipo.

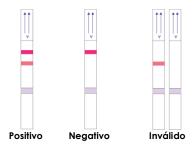
PASO CUATRO: VISUALIZACIÓN DEL RESULTADO


PRECAUCIÓN: Cada uno de los tubos generados del **PASO DOS** pueden ser utilizados inmediatamente, en caso contrario deben ser almacenados a -20 °C y luego permitir que alcance temperatura ambiente antes de utilizarlos.

A continuación, siga cada uno de los pasos que se describen, recuerde no modificar y/o alterar ninguno de los pasos o cantidades que se indican.

- I. Identifique cada uno de los materiales provistos por el producto Bionet multi y asegúrese de contar con todo lo necesario, consulte la pág. 6, sección Contenido.
- II. Recolecte **10 µL** del **tubo C+** y transfiéralos a un tubo con solución de corrimiento, mezcle vortex por 5 segundos, cierre perfectamente y rotule nuevamente con RC+.

III. Repita este mismo procedimiento para cada uno de los tubos generados restantes según corresponde.


- IV. Tome una prueba Bionet multi y rotúlela según el tubo con solución de corrimiento en el que la colocará (tubo elaborado en el paso anterior):
 - Tira S para el tubo con solución de corrimiento que tiene la muestra.
 - Tira C+ para el tubo con solución de corrimiento que tiene el control positivo.
 - Tira C- para el tubo con solución de corrimiento que tiene el control negativo.

Programe un temporizador por 3 minutos.

5

V. Una vez hayan pasado los 3 minutos, saque la prueba del tubo y colóquela sobre una superficie plana y limpia (limpie el excedente si es necesario), interprete los resultados.

Resultados

. 100011000	
Control positivo (C+)	Resultado: Se visualiza una línea de color en la región de control (C) y otra línea de color en la región de prueba (T). Un resultado positivo indica que se siguió de manera correcta el procedimiento.
Control negativo (C-)	Resultado: Únicamente se visualiza una línea de color en la región de control (C). Un resultado negativo indica que se siguió de manera correcta el procedimiento.
Muestra	Positivo: Se visualiza una línea de color en la región de control (C) y otra línea de color en la región de prueba (T). Este resultado indica que se detectó el ADN de Salmonella spp. Nota: Se considera un resultado positivo sin importar la intensidad de la línea de color en la región de prueba (T) siempre que sea visible. Negativo: Se visualiza una línea de color en la región de control (C). No se observa ninguna línea de color en la región de prueba (T). Un resultado negativo indica que no se detectó el ADN de Salmonella spp.
Inválido	No se visualiza la línea de color en la región control (C).

Contenido

Esta prueba proporciona los reactivos en las cantidades necesarias para procesar un total de 10 muestras con detección y visualización de resultados. A continuación, se presenta el contenido por separado de los productos:

INCLUIDOS

SALMONET-ADN

- Reactivo seco
- Reactivo diluyente
- Control negativo (C-)
- Control positivo (C+)
- Gotero con aceite mineral
- Agua libre de nucleasas
- Tubos de 200 uL
- Buffer de lisis

Bionet multi

Reg. Sanitario 0037R2024 SSA

- Prueba en tira
- Tubos con solución de corrimiento

REQUERIDOS, PERO NO INCLUIDOS

- Micropipetas
- Puntas para micropipetas
- Guantes de nitrilo
- Vortex
- Soporte magnético o imán de alta potencia
- Contenedor de RPBI
- Termobloque, baño seco o incubadora

NOTA: Algunos de los reactivos/equipos pueden ser adquiridos en conjunto o por separado, para ello visite www.amunet.com.mx

6

Estabilidad y almacenamiento de los reactivos

- Almacene cada componente según lo indicado su etiqueta impresa.
- La prueba es estable hasta la fecha de caducidad impresa en la bolsa.
- No utilice los reactivos después de la fecha de caducidad.

Control de calidad

Un control interno está incluido en cada prueba de Bionet multi. Una línea de color aparece en la región control (C), este es el control interno del procedimiento, su función es confirmar que hubo suficiente cantidad de muestra y el procedimiento fue correcto. Esta prueba incluye controles, por lo que, se recomienda emplearlos en cada análisis de muestra como buena práctica de laboratorio.

Limitaciones

- Los resultados deben ser interpretados por personal calificado.
- SALMONET-ADN es solo para uso profesional *in vitro*. Esta prueba cualitativa no puede determinar el valor cuantitativo ni la tasa de aumento en la concentración de ADN de Salmonella spp.
- Esta prueba ha sido evaluada para la detección de ADN de Salmonella spp y solo debe ser usada para su detección y no para otros tipos de patógenos.
- La tonalidad que adquiera la membrana no interfiere en el resultado. Mientras la línea en la región control se visualice, el resultado es válido.
- Las pruebas no están autorizadas para vigilancia epidemiológica.
- El desempeño de la prueba se ha evaluado bajo las condiciones y características mencionadas en este manual. Se recomienda seguir las instrucciones para asegurar la precisión de los resultados.

Características de presentación

Precisión Intra-ensayo

La repetibilidad de la prueba se determinó realizando 20 réplicas por cada concentración incluyendo una libre de ADN de *Salmonella spp*, se utilizó solución de corrimiento como muestra. Las muestras fueron correctamente identificadas el 99% de las veces.

Inter-Ensayo

La reproducibilidad de la prueba se determinó realizando 20 réplicas de 3 lotes diferentes de la prueba en dos días distintos por cada concentración incluyendo una libre de ADN de Salmonella spp. Las muestras fueron correctamente identificadas el 99% de las veces.

Sustancias interferentes

Los siguientes compuestos han sido probados usando SALMONET-ADN, no se observó interferencia.

7

- Ácido ascórbico
- Ácido úrico
- Glucosa
- Acido oxálico
- Aspirina
- Bilirrubina
- Urea
- Cafeína
- Omeprazol
 - Albumina

Existen sustancias que pueden interferir durante la detección debido a una disminución de la carga bacteriana en las muestras dando lugar a resultados falsos negativos como el uso de medios de transporte con antibióticos como: ampicilina, tetraciclina, cloranfenicol, estreptomicina, ciprofloxacino, gentamicina, detergentes, ácido cítrico, contaminantes ambientales entre otros.

Reactividad cruzada

SALMONET-ADN fue empleada con los microorganismos de la siguiente tabla, no se presentó reactividad cruzada positiva.

- Acinetobacter baumannii Escherichia coli
- Aeromonas hydrophila
- Arcobacter butzleri
- Bacillus cereus
- Campylobacter
 - o coli
 - o jejuni
 - o lari
- Citrobacter freundii
- Cronobacter sakazakii
- Edwardsiella tarda
- Enterobacter
 - aerogenes
 - cloacae
- Enterococcus
 - faecalis
- faeciumHafnia alvei
- Klebsiella
 - oxytoca
 - o pneumoniae

- o O55:H7
- O103:H2O111: NM
- O121:H19O145:H28
- o O157:H7
- Lactobacillus brevis
- Listeria
 - o grayi
 - o innocua
 - o ivanovii
 - monocytogenes
 - seeligeri
- welshimeriListonella anquillarum
- Morganella morganii
- Proteus
 - Hauseri
 - o mirabilis

- Pseudomonas
 - aeruainosa
 - fluorescens
- Serratia marcescens
- Shigella
 - Dvsenteriae
 - o Flexneri
 - o Sonnei
- Streptococcus
 - bovis
 - o pnueamoniae
- Vibrio
 - aestuarianus
 - o cholerae
 - o harvevi
 - o mimicus
 - o parahaemolyticus
 - o vulmificus
- Yersinia enterocolitica

Desempeño

Se utilizó SALMONET-ADN para analizar muestras de alimentos de consumo para humanos y para animales libres y contaminados con *Salmonella spp*. Todos los resultados fueron comparados con qPCR. A continuación, se reportan los resultados:

MÉTODO	qPCR			
	Resultados	Positivo	Negativo	Total
SALMONET-ADN	Positivo	154	2	156
	Negativo	1	268	269
	Total	155	270	425

8

Sensibilidad Relativa: 99.35% (95% IC: 98.04% - 99.79%) Especificidad Relativa: 99.26% (95% IC: 97.89% - 99.74%) Exactitud relativa: 99.29% (95% IC: 97.95% - 99.76%)

IC: Intervalo de confianza

Beneficios

- Rapidez: Mayor ahorro de tiempo con una alta reproducibilidad.
- **Simple:** Fácil operación con procesos cortos y escalable.
- **Eficiencia:** Una sola metodología que engloba el procesamiento, detección y visualización de los resultados.
- **Seguridad:** Ningún producto químico de este kit es tóxico.

Consideraciones adicionales

- a) Asegúrese de utilizar la cantidad indicada de muestra para la prueba, ya que demasiada o muy poca muestra puede conducir a una desviación de los resultados.
- b) No intercambie reactivos de diferentes lotes ni use reactivos de otras pruebas disponibles comercialmente. Los componentes de esta prueba se combinan con precisión para un rendimiento óptimo
- c) Las micropipetas y consumibles deben ser estériles. Se recomienda irradiar con luz UV por 15 minutos antes de su uso, las micropipetas previamente limpiadas con cloro y etanol asegúrese de no dejar residuos.
- d) Se recomienda el uso de equipo de protección al trabajar muestras.
- e) PRECAUCIÓN: Permita que los reactivos y las muestras se descongelen completamente antes de su uso. Mezcle el reactivo suavemente antes de usar teniendo la precaución de no generar espuma. Regrese a su temperatura de almacenamiento después de su uso.
- f) PRECAUCIÓN: No deje abierto el contenedor de las pruebas Bionet multi, solo ábrala hasta su uso, la presencia de humedad puede afectar el desempeño de la prueba.
- g) Evite interrupciones prolongadas de los pasos del ensayo. Asegure las mismas condiciones de trabajo para todos los tubos.
- Calibre las micropipetas con frecuencia para asegurar la precisión de la distribución de muestras/reactivos. Use puntas diferentes de micropipeta en cada muestra y reactivo para evitar contaminación cruzada.
- La prueba podría verse afectada por el polvo, reactivos químicos y/o sustancias como hipoclorito de sodio, ácidos, álcalis, etanol, etc. No realice el ensayo en presencia de estas sustancias y utilice puntas nuevas de preferencia con filtro.
- j) Todos los productos de desecho generados por esta prueba deben disponerse de acuerdo a la NOM-087 vigente sobre el manejo de Residuos Biológico infecciosos.
- k) Coloque un tubo de 1.5-2 mL con 1 mL de agua destilada en el termobloque, baño seco o incubadora con la temperatura deseada a usar, espere 10 minutos y coloque un termómetro en el interior del tubo, si el termómetro indica la temperatura deseada a utilizar proceda a emplearlo para su ensayo. En caso contrario ajuste, espere y vuelva a medir hasta alcanzar la temperatura deseada.

Dudas, preguntas y consejos

- ¿Cuánto tiempo es viable si guardo a -20°C mi muestra enriquecida? R: Puede ser viable
 hasta dos años como máximo, si desea que sea viable por tiempo indefinido debe
 almacenarlo a -80°C. Evite realizar muchos ciclos de congelamiento y descongelamiento.
- ¿Debo incluir controles cada vez que analizó una muestra? R: Sí, los controles aseguran que el proceso llevado a cabo fue el correcto.
- -¿Cómo puedo ser más eficiente al momento de realizar los ensayos? R: Puede colocar los reactivos que comparten todos en vez de uno por uno como sucede con el reactivo diluyente del paso dos, pero no mezcle ya que eso lo hará cuando al final coloque la muestra o control con su respectivo cambio de punta de micropipeta para evitar reactividad cruzada.
- ¿Qué pasa si dejo mis tubos por más tiempo o temperatura indicada en el termobloque, baño seco o incubador? R: El ensayo LAMP es sensible, en caso de que esto ocurra, los resultados obtenidos pueden verse afectados y será necesario repetir el ensayo y descartar esos tubos.

Referencias

- 1. WHO. Salmonella (Non-Typhoidal) Fact Sheet. 2017.
- Domesle KJ, Yang Q, Hammack TS, Ge B. Validation of a Salmonella loop-mediated isothermal amplification assay in animal food. Int J Food Microbiol. 2018; 264:63-76
- 3. Ge Beileiy., y cols. 2019. Multi-Laboratory Validation of a Loop-Mediated Isothermal Amplification Method for Screening Salmonella in Animal Food. Frontiers in Microbiology 10.
- NORMA Oficial Mexicana NOM-210-SSA1-2014, Productos y servicios. Métodos de prueba microbiológicos. Determinación de microorganismos indicadores. Determinación de microorganismos patógenos.
- 5. Kelly J. Domesle, Qianru Yang, Thomas S. Hammack, Beilei Ge. (2018). Validation of a Salmonella loop-mediated isothermal amplification assay in animal food. International Journal of Food Microbiology, 264, 63-76.

10

Índice de símbolos

$\bigcap \mathbf{i}$	Consultar el instructivo de uso
~	Solo para evaluación de desempeño in vitro
2 °C - 8 °C	Almacenar entre 2 – 8°C
	No utilizar si el paquete está dañado
UPI	Uso para investigación

\square	Caducidad	
REF	Número de catálogo	
LOT	Número de lote	
2	No reutilizar	

11 12